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The design and the synthesis of new chiral ligands are of great segpho (dihedral angle: 67as a free ligandy-8 gave2ain 44%
importance in advancement of asymmetric catalygisong the yield with 62% ee (entry 3), whereas the employmentR)fis-
chiral ligands in the literature, chiral bisphosphines based on a biaryl binag® (dihedral angle: 80%3in a Rh compleX vs 74.4 for binag)
backbone constitute a useful family of ligands in a number of tran- resulted in 28% yield with 40% ee (entry 4). These results may
sition-metal-catalyzed asymmetric transformatidSsnce the first imply that higher enantiomeric excess can be achieved by the use
development of binapyarious modified binap’s have been report-  of an axially chiral bisphosphine with an even smaller dihedral an-
ed, firmly establishing the utility of this family of ligands. In ad-  gle, but in fact, R)-segphos has one of the smallest dihedral angles
dition to the substituents on the phosphorus atoms, the change ofamong the readily available axially chiral bisphosphihiége there-
the dihedral angle of backbone axes has shown a significant impactfore decided to design and synthesize an easily accessible chiral
on the enantioselectivity in some reactidns. bisphosphine that could potentially exhibit a much smaller dihedral
Although a large number of chiral ligands are known to date, angle.
preparation of a new chiral ligand is still often necessary to achieve  As described by Géd and Saitd, smaller substituents at 6;6
high enantioselectivity, particularly in the context of developing a positions of axially chiral bisphosphines provide smaller dihedral
new asymmetric transformation. In this Communication, we de- angles both in free ligands and in their metal complexes, but if
scribe the development of a rhodium-catalyzed asymmetric isomer-these substituents are too small, the bisphosphines no longer possess

ization of racemier-arylpropargy! alcohols t@-chiral indanonée=? a stable axial chirality due to a free rotation around the axis. To

and the achievement of high enantioselectivity through optimization overcome this problem with maintaining the smallness of the 6,6

of axial chirality of bisphosphine ligands. substituents, we chos&R)-3 as the target, a dimer oR{-MeO-
Initially, we conducted an isomerization reaction df){la in mopt2 (Scheme 1). This is expected to have a free rotation around

the presence of 5 mol % rhodium catalyst to examine the effect of the 3—3" axis at ambient temperature due to the lack of substituents
chiral ligands (Table 1). The use dR)binap produced only 8%  at 4,4"-positions, but the existence of fixed axes atlland 1'—

yield of indanone2a with 41% ee (entry 1).R)-MeO-biphep, 1" in (R)-configurations might control the three-dimensional
which has a smaller dihedral angle around the chiral axi§ §&2 structure upon complexation to a transition métal.
a free ligand vs 86for binap)#28was somewhat more effective, Starting with R)-MeO-mop oxide 4),24 phosphine oxide-directed

furnishing2ain 30% yield with 56% ee (entry 2). The use &){ ortho-lithiation?® followed by electrophilic quench with,Iproduces

Table 1. Asymmetric Isomerization of ()-1-Aryl-2-propyn-1-ols 1 3-iodo speciesR)-5. Copper-mediated redl_Jctive _dimerization of
o (R)-5, followed by reduction of the phosphine oxides, affords the

o OH [th(igg%z]g? r(n50|"r;2')°/°) R! dgsired bisphosphin&(R)-3. Consistent with our hypothesis, all
A S 0.6 MKOHag . mixture of [Rh(cod)]B_F4 and cR,R)-S (®'P NMR: 1.8 ppm (s)) in
R2 ! TH(F156'6'9|0%2)4h s & CDCl; generated a single speciedR NMR: 25.1 ppm (dJ =
3 ()1 ’ ’ (8)-2 148 Hz)). We also obtained an X-ray crystal structure of a related
yield ee Rh/(R,R)-3 complex, and the absolute configuration of the-3’
entry substrate/product ligand (%) (%) axis was determined to b&) with its dihedral angle being 72.8
1 1lal2a(R!=R?=R3=H, Si = SiEt) (R)-binap 8 41 (Scheme 1; see Supporting Informatidn).
2 laza ggg'g"ezophtgghep AR We then conducted an isomerization reactionj-(a in the
4 1lal2a (R)-Hg-binap 28 40 presence of R R)-3, obtaining indanon&a in higher yield and
5 1la2a o (RR)-3 57 74
g; %ng (Ri=R?=R3=H, Si=SiMe,Et) ((s; 2|enga;)phos 1208 1249 Scheme 1. Synthesis of (R,R)-3 (left)? and ORTEP lllustration of
8 1b2b (RR-3 57 99 [Rh((R,R)-3)(MeCN),]PFg (right; MeCN, PFg, hydrogens are omitted)
9 1d2c(R=R?=R3=H, Si=SiMey) (RR)-3 44 92 2
10 1d/2d (R'=R%=H, R>=Me, Si=SiMe;Et)  (RR)-3 60 93
11 1e2e(R=R%=H, R*=OMe, Si=SiMe,Et) (RR)-3 57 94
12 1f/2f (R'=Me, RB=R®=H, Si=SiMe,Et) (RR)-3 56 92
13 1g2g(R!=R?>=Me, R=H, Si=SiMe;Et)  (RR)-3 50 95
14> 1h/2h (R'=H, R%,R>=0CH,0, Si=SiMeEt) (RR)-3 55 96 O
OMe  (b).()

aThe regioselectivity of cyclization is 20:1.° The regioselectivity of P(O)Phs

cyclization is 10:1. OO
X

: 1 M/"f R '? " r—"‘,
““PPh PR o
a2 NP
MeQ O B -
(R)-4: X =H O &L % S
(a) - 825§ )
Ph,P 6 OMe th PhyP ,:'(R)'s'x" O X Fe
PPh, MeO_6 PPh, PPhy P Ph; D
aConditions: (at-BuLi (5.0 equw) THF,—96 °C; then b (3.5 equiv),
51%; (b) Cu powder (3.7 equiv), DMF, reﬂux 83%; (c) MeOTf (6.0 equiv),

blnap MeO -biphep segphos ablnap DME, 60 °C; then LiAlH4 (15 equiv), 60°C, 89%.
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propargyl alcohols in Table 1 (up to 60% yield) and the enantio-

0
HO_ H'
S H enrichment of the remaining starting materials.
[Rh]—O)H/ . N — H,;,z‘i[Rh]_OH In summary, we have developed a rhodium-catalyzed asymmetric
R ' H,0

[Rh] 1,0 synthesis of indanones by isomerization of racemarylpropargy!
oM (/[Flh] alcohols. High enantioselectivity has been achieved by the use of
X ) a newly developed axially chiral bisphosphine ligari®R)-3). This
H2 A R R HD ligand is unique in the sense that its axial chirality is fixed to a
l[}-H elimination arylrhodationT single configuration upon complexation to a transition metal due
0 o R to the chiral axes existing at other positions within the molecule.
RN hydro- N1 1 4-shit i Future studies will explore further development and application of
X p rhodation (Rh] \ " this class of chiral ligands.
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these conditions, severat-J-a-arylpropargyl alcohols bearing
substituents on the aromatic ring are also isomerized to indanonesgeferences
in high enantiomeric excess (996% ee; entries 1014).
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